Output Transform Tone Scale

Amazing work Jed!

I preface this series of questions with the fact that I have no idea what anyone means by “tone”, let alone “mapping”. I’m sure there are people facepalming.

  1. I’d dearly appreciate it if someone could explain what the X input axis is and the Y output axis is?
    1.a How is this relationship related to “tone”?
  1. Isn’t the point of an aesthetic transfer function to perform a compression of an input gamut volume along X to an output gamut volume along Y?
    2.a In this case, isn’t the “dimming” exactly as expected?
    2.b If this is expected, is there an error of logic with respect to the dimension of the input X range?
    2.c Is there a limit to the display gamut volume range of expression of output Y?
    2.c.1 If there is a potential limit, is there a means to glean a maximal quantization increment with respect to input X and output Y?
    2.d Are there quantization limits at both the upper and lower end impacting the expression of a given radiometric-like chromaticity and / or perceptual hue?
  2. With respect to norms, how does this relate to the aesthetic ground-truth of the past century of photographic media?
    3.a Wasn’t film explicitly radiometric electromagnetic energy transformed into chemical energy?
    3.b What happens with high energy radiometric-like saturated mixtures with respect to high energy, lower saturated mixtures?
    3.c If there is a difference in 3.b, does this create a cognitive dissonance with respect to the typical aesthetic ground-truth of the past hundred years of photographic media?

Again, tremendous work.

PS:

  1. Assuming the luminance is used as the input lookup value, it would seem the magenta skew might indicate that the decompression is being applied incorrectly in the luminance norm case?
  2. It might be informative to see how non-maximally saturated values translate to each approach?